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Abstract

Four audio feature sets are evaluated in their ability to differentiate five audio classes: pop-
ular music, classical music, speech, noise and crowd noise. The feature sets include low-level
signal properties, mel-frequency spectral coefficients, and two new sets based on perceptual
models of hearing. The temporal behavior of the features is analyzed and parameterized and
these parameters are included as additional features. Using a standard Gaussian framework
for classification, results show that the temporal behavior of features is important for auto-
matic audio classification. In addition, classification is better, on average, if based on features
from models of auditory perception rather than on standard features.

1 Introduction

Developments in Internet and broadcast technology enable users to enjoy large amounts of mul-
timedia content. With this rapidly increasing amount of data, users require automatic methods to
filter, process and store incoming data. Some of these functions will be aided by attesthed

data, which provides information about the content. However, due to the fact that metadata is not
always provided, and because local processing power has increased tremendously, iloteskst in
automatic multimedia analysis has increased. A major challenge in this field is the automatic clas-
sification of audio. During the last decade, several authors have proposed algorithms to classify
incoming audio data based on different algorithms [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Most of these
proposed systems combine two processing stages. The first stage analyzes the incoming waveform
and extracts certain parameters (features) from it. The feature extraction process usually involves
a large information reduction. The second stage performs a classification based on the extracted
features. These different stages will be discussed in more detail below.

A variety of signal features have been proposed for general audio classification. A large por-
tion of these features consists of low-level signal features, which include parameters such as the
zero-crossing rate, the signal bandwidth, the spectral centroid, and signal energy [1, 2, 4, 6, 8, 9].
Usually, both the averages and the variances of these signal properties are included in the feature
set. A second important feature set which is inherited from automatic speech recognizers con-
sists of mel-frequency cepstral coefficients (MFCC). This parametric description of the spectral
envelope has the advantage of being level-independent and of yielding low mutual correlations
between different features for both speech [12] and music [13]. Classification based on a set of
features that are uncorrelated is typically easier than that based on features with correlations.

Both low-level signal properties and MFCC have been used for general audio classification
schemes of varying complexity. The simplest audio classification tasks involve the discrimination
between music and speech. Typical classification results of up to 95% correct have been reported



[14, 4, 15]. The performance of classification schemes usually decreases if more audio classes are
present [7, 10]. Hence, the use of features with high discriminative power becomes an issue. In
this respect, the MFCC feature set seems to be a powerful signal parameterization that outperforms
low-level signal properties. Typical audio classes that have been used include clean speech, speech
with music, noisy speech, telephone speech, music, silence and noise. The performance is roughly
between 80 and 94% correct [16, 17, 18, 11].

For the second stage, a number of classification schemes of varying complexity have been
proposed. These schemes include Multivariate Gaussian models, Gaussian mixture models, self-
organizing maps, neural networks, k-nearest neighbour schemes and hidden Markov models.
Some authors have found that the classification scheme does not influence the classification accu-
racy [4, 19], suggesting that the topology of the feature space is relatively simple. An important
implication of these results is that, given the current state of audio classifiers, perhaps further ad-
vances could be made by developing more powerful features or at least understanding the feature
space, rather than building new classification schemes.

Thus, our focus here is on features for classifying audio. We compare the two feature sets
most commonly used, low-level signal properties and the MFCC, with two new feature sets and
evaluate their performance in a general audio classification task with five classes of audio. The two
new feature sets, described in detail below, are based on perceptual models of auditory processing.

2 Method

Our audio classification framework consists of two stages: feature extraction followed by classi-
fication. We compare four distinct feature extraction stages to evaluate their relative performance
while in each case using the same classifier stage, a Gaussian-based quadratic discriminant anal-
ysis (QDA) [20]. The feature sets (described below) are: (1) low-level signal properties; (2)
MFCC; (3) psychoacoustic features including roughness, loudness and sharpness; and (4) an au-
ditory model representation of temporal envelope fluctuations. The audio database consists of five
general classes of audio: classical music, popular music (all styles but classical), speech (male and
female, English, Dutch, German and French), crowd noise (applauding and cheering), and noise
(including traffic, fan, restaurant, nature, etc. noises). The number of files in each class is given in
Table 1.

Class Name || Popular Music| Classical Music| Speech| Noise | Crowd Noise
Number of Files 175 35 31 25 31

Table 1: Audio database by class

The classification process begins with the extraction of a set of features, i.e., feature vectors,
from each sound file. Features are calculated on 10 consecutive 32768-sample frames (44.1 kHz
sampling rate) with a hop-size of 24576. Thus, each audio file is represented by 10 feature vectors
and these vectors are grouped into classes based on the type of audio. The feature vectors from
each class are divided into two groups, a training group and a test group: a randomly chosen 90%
of the vectors are assigned to the training group and the remaining 10% are assigned to the test
group?! An N-dimensional (wher#! is the length of each feature vector) Gaussian mixture model
is then parameterized based on ttening group, assuming that each audio class comprises a

1This method and the 90%-10% split of training and test data was used in an earlier study on music genre classifica-
tion [21]. Itis not clear that this is the optimal division of training and test data but we have not yet evaluated the effect
of using different split sizes.



single centroid with its own mean and variance. Each file ingktgroup is then classified based

on its feature vectors using Bayesian theory to find which class centroid it most probably belongs.
Details of this classification method, QDA, can be found in [20]. This controlled random division
between training and test groups was performed 10 times. The average classification performance
of these 10 divisions is used as the overall classification performance of the current feature set and
model.

In addition to evaluating each feature set by its classification performance we also look at the
discriminating power of individual features. To do this, we calculateBihattacharyya distance
between classes based on single features. The Bhattacharyya distance is a symmetric normalized
distance measure between two centroids based on the centroid means and (co)variances [22]. A
high Bhattacharyya distance for a particular feature means that the centroids are well separable
along that feature (dimension).

Although the size of the feature sets differ, we performed classification using the same number
of features from each set. We chose the best 9 features from each set following an iterative ranking
procedure. First the feature space was reduced to one feature and for each feature, the overall
misclassification rate was estimated (by calculating the Chernoff bound) from the Bhattacharyya
distances between the classes [22]. The feature which gave the lowest estimate was ranked as
the top feature. Next the same process was performed using a two-feature space that included
the top-ranked feature and one of the remaining features. The feature that gave, along with the
top-ranked feature the lowest estimate of misclassification was ranked second. This process was
repeated until all features were ranked. (Note that this method does not guarantee that the optimal
combination is found since the search method may result in order effects.) The top nine features
of each set were chosen and used for the classification results described below.

2.1 Features

Features are calculated on 32768-sample frames of audio. It has been reported, for speech-music
discrimination, that the 2nd-order statistics of features (over time) are better features for classifi-
cation than the features themselves [4]. Here we carry the temporal analysis one step further and
include a parameterized analysis of the features’ temporal fluctuations. To do this we subdivide
the audio frame into 1024-sample subframes with a 512-sample overlap, calculate feature values
for each subframe and take the fast Fourier transform (FFT) on the array of subsequent feature
calculations. Next the power spectrum is calculated and normalized by the DC value to reduce
correlations. Finally the frequency axis is summarized by summing the energy in four frequency
bands: 1) 0 Hz (average across observations), 2) 1-2 Hz (on the order of musical beat rates), 3)
3-15 Hz (on the order of speech syllabic rates), and 4) 20-150 Hz (in the range of modulations
contributing to perceptual roughness).

The two new feature sets introduced in Secs. 2.1.3 and 2.1.4 are based on models of human
auditory processing. Each begins with a bank of bandpass filters which represent the frequency
resolution of the peripheral human auditory system. These filters, termed critical band filters,
reflect the channeling property of the auditory system, i.e., signals that are passed through different
critical bands are, to a large extent, processed independently [23].

2.1.1 Low-level signal parameters

This feature set, based on standard low-level (SLL) signal parameters, includes: (1) root-mean-
square (RMS) level, (2) spectral centroid, (3) bandwidth, (4) zero-crossing rate, (5) spectral roll-off
frequency, (6) band energy ratio, (7) delta spectrum magnitude, (8) pitch, and (9) pitch strength.



This set of features is based on a recent paper by Dongge Li, et al., at Philips Research Briar-
cliff [11]. See the paper for mathematical details.
The final SLL feature vector consists of 36 features:

1-9: DC values of the SLL feature set
10-18: 1-2 Hz modulation energy of the SLL feature set
19-27: 3-15 Hz modulation energy of the SLL feature set
28-36: 20-150 Hz modulation energy of the SLL feature set

212 MFCC

The second feature set is based on the first 13 MFCCs [24]. The final feature vector consists of 52
features:

1-13: DC values of the MFCC coefficients
14-26: 1-2 Hz modulation energy of the MFCC coefficients
27-39: 3-15 Hz modulation energy of the MFCC coefficients
40-52: 20-150 modulation energy of the MFCC coefficients

2.1.3 Psychoacoustic features

The third feature set is based on estimates of the percepts roughness, loudness and sharpness.
Roughness is the perception of temporal envelope modulations in the range of about 20-150 Hz
and is maximal for modulations near 70 Hz. Loudness is the sensation of intensity and sharpness is
a perception related to the spectral density and the relative strength of high-frequency energy. For
loudness and sharpness, we characterize the temporal behavior in the same manner as for the SLL
and MFCC feature sets. The estimate of roughness, however, is not treated the same way. Because
roughness is based on mid-frequency temporal envelope modulations, an accurate estimate can
only be obtained for relatively long audio frames~ 180 msec). Thus, the temporal variation of
roughness within an audio frame is represented by its mean and standard deviation over subframes
of lengthNs = 8192 (186 msec) with a hopsize of 4096.

Roughness Our model for roughness is based on those of Zwicker and Fastl [25] and Daniel and
Weber [26]. Firstwe filter each frame of audio by a bank of gammatone filters [27], bandpass filters
based on the effective frequency analysis of the ear, which are spaced logarithmically between
125 and 10 kHz. Next, the temporal (Hilbert) envelope of each filter output is calculated by taking
the FFT, setting the negative frequency components to zero, multiplying the positive frequency
components by 2, taking the inverse FFT and finally the absolute value. A correlation factor is
then calculated for each filter based on the correlation of its output with that from two filters
above and below it in the filter bank. This measure was introduced to decrease the estimated
roughness of bandpass noise. The roughness estimate is then calculated by filtering the power
in each filter output with a set of bandpass filters (centered near 70 Hz) that pass only those
modulation frequencies relevant to the perception of roughness [25], multiplying by the correlation
factor and then summing across frequency and across the filter bank.

Loudness The loudness model is loosely based on the work of Zwicker and Fastl [28]. Here we

assume that an RMS value of 1 in the real value digital representation of the audio file corresponds
to 96 dB SPL and we estimate the loudness level in sones. First, the power spectrum of the input
frame is calculated and then normalized by subtracting (in dB) an approximation of the absolute
threshold of hearing. This normalized power spectrum is then filtered by a bank of gammatone



filters and summed across frequency to yield the power in each auditory filter, which corresponds
to the internal excitation as a function of frequency. These excitations are then compressed, scaled
and summed across filters to arrive at the loudness estimate.

Sharpness The psychoacoustic percept of sharpness is based primarily on the relative strength
of high-frequency components [29]. It is estimated here using an algorithm almost identical to
that of loudness with the only differences being a weight applied to each filter before the final
summation and an additional normalization factor. The weights are larger for filters at higher
center frequencies and were optimized to fit the psychoacoustic data on sharpness [29, 30].

The final psychoacoustic (PA) feature vector consists of 10 features:

average roughness

standard deviation of roughness
average loudness

average sharpness

1-2 Hz loudness modulation energy

1-2 Hz sharpness modulation energy
3-15 Hz loudness modulation energy
3-15 Hz sharpness modulation energy
20-150 Hz loudness modulation energy

: 20-150 Hz sharpness modulation energy
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2.1.4 Auditory filterbank temporal envelopes

The fourth feature set is based on a model representation of temporal envelope processing by the
human auditory system. Each audio frame is processed in two stages: (1) it is passed through a
bank of gammatone filters, as in the PA feature set, which represent the spectral resolution of the
peripheral auditory system and (2) a temporal analysis is performed by computing the modulation
spectrum of the envelope (computed as in the roughness feature) of each filter output. In this im-
plementation the filterbank includes every other critical band filter from 260-9795 Hz. Because
the temporal analysis is performed directly on the entire 32768-sample frame we do not need to
subdivide it into sub-frames as with the other features. The other features consist of only one value
per audio frame and thus in order to evaluate their temporal behavior within a single frame, their
values must be computed on a subframe basis. An advantage of being able to perform the tem-
poral analysis directly at the level of the audio frame is that higher frequencies (up to the Nyquist
frequency of the sampling rate) can be represented. After computing the envelope modulation
spectrum for each auditory filter it is normalized by the average value (DC) and, parameterized by
summing the energy in four frequency bands and taking the log: 0 Hz (DC), 3-15 Hz, 20-150 Hz,
and 150-1000 Hz. The parameterized summary of high-frequency modulations is not calculated
for some low-frequency critical band filters: a frequency band summary value is only computed
for a critical band filter if the filter’s center frequency is greater than the maximum frequency of
the band. This process yields 62 features describing the auditory filterbank temporal envelopes
(AFTE):

1-18: DC envelope values of filters 1-18
19-36 3-15 Hz envelope modulation energy of filters 1-18
37-52 20-150 Hz envelope modulation energy of filters 3-18
53-62 150-1000 Hz envelope modulation energy of filters 9-18



3 Results

3.1 SLL feature set

The results for the standard low-level feature set are shown in Fig. 1. The left panel shows the
confusion matrix using the best 9 features of the SLL feature set. Classification performance is
best for crowd noise with 99% correct classification and second best for classical music with 96%
correct classification. Popular music is correctly classified in 80% of the cases, while in 20% of
the cases it is classified as speech. Detection of background noise is not good (46% correct). It
is often misclassified as classical music (28%) or crowd noise (21%). The overall classification
accuracy is 82%.

The right panel shows the Bhattacharyya distance between all classes based on single fea-
tures. Features 5 (spectral rolloff frequency) and 6 (band-energy ratio), and their second-order
statistics (features 14, 15, 23, 24, 32, 33) show discriminative power between classical music and
other classes. Furthermore, the 2-3 Hz and 3-15 Hz modulation energies of most features (feature
numbers 19-27) contribute to discrimination between speech and background noise and between
speech and crowd noise. Consistent with the confusion between speech and popular music in the
classification results, no features show strong discrimination between popular music and speech.
Only features 19 (3-15 Hz modulation energy of the signal RMS) and 28 (20-150 Hz modulation
energy of the RMS) show some discriminative power.
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Figure 1:Standard low-level feature€lassification performance (left) and feature discrimination
power, i.e., distance between classes as a function of feature (right). The numbers above the x-axis
indicate the rank of the best 9 features.

3.2 MFCC feature set

Figure 2 shows the results for the MFCC feature set. The format of the figure is the same as
Fig. 1: the confusion matrix of classification using the best 9 features is shown in the left panel
and the Bhattacharyya distances between classes based on single features are shown in the right
panel. The overall classification accuracy using the best 9 MFCC features is 85%, which is better
than the SLL feature set. However, some of the individual audio classes show worse classification
accuracy. For example, classical music is correctly identified in 90% of all cases, compared to
96% for the SLL feature set. Furthermore, crowd noise is correctly recognized in 86% of the
cases, compared to 99% for the SLL feature set. Classification of background noise shows a large



increase in performance, at 75% for the MFCC feature set compared to only 46% for the SLL
feature set.

The Bhattacharyya distances in the right panel show that the second MFCC feature, which is
the 2nd discrete cosine transform coefficient of the input spectrum, is a powerful feature, especially
for discriminating crowd noise from other classes. This feature can be interpreted as the relative
levels of low- and high-frequency energy in the signal. Features 6-13, which describe the input
spectrum at a fine detail level, do not contribute to the classification process. On the other hand,
second-order statistics of the first few MFCCs contribute to the discrimination between various
classes. As with SLL features, discrimination between popular music and speech and between
background noise and crowd noise is poor. This is consistent with the low Bhattacharyya distances
between those classes.
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Figure 2:Mel-frequency cepstral coefficients (MFCC): Classification performance (left) and fea-
ture discrimination power, i.e., distance between classes as a function of feature (right). The
numbers above the x-axis indicate the rank of the best 9 features.

3.3 PA feature set

The results for the PA feature set are shown in Fig. 3. The overall classification accuracy of this
feature set is 84%. The confusion matrix shows that most classes were classified with an accuracy
between 72 and 88% correct, with the exception of crowd noise which was classified correctly in
100% of the cases. The features that best discriminate between the classes are the 3-15 Hz modu-
lation energy of the sharpness (feature 8), the average sharpness (feature 4), the average roughness
(feature 1), the average loudness (feature 3) and the 3-15 Hz loudness modulation energy (feature
7). The panel of Bhattacharyya distances for individual class contrasts shows that the best fea-
ture 8 (3-15 Hz modulation energy of the sharpness) is key in the discrimination of speech from
crowd noise, background noise and classical music. In addition, the average sharpness (feature 4)
provides a relatively large distance between classical music and crowd noise.

3.4 AFTE feature set

The feature analysis results for the auditory filter temporal envelope modulation feature vector are
shown in Fig. 4. The layout of the figure is the same as previous figures. The overall classification
accuracy using the best 9 features is high (90%). Crowd noise is detected correctly in all cases and
background noise and popular music are detected quite accurately (91%). Speech and classical
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Figure 3: Psychoacoustic feature€lassification performance (left) and feature discrimination
power, i.e., distance between classes as a function of feature (right). The numbers above the
x-axis indicate the rank of the best 9 features.

music have lower scores (85% and 83%, respectively) and are both sometimes misclassified as
popular music. Low and high Bhattacharyya distances (right panel) are somewhat scattered across
features and audio classes, however there is a clear maximum for features 1-5 (steady-state values
of the auditory filters 1-5 centered at 260-3760 Hz) for the discrimination between popular music
and crowd noise. Other than that, no other individual feature sticks out as a powerful discriminator;
the high performance of the AFTE feature set is due to a combination of features.
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Figure 4: Auditory filterbank temporal envelope: Classification performance (left) and feature
discrimination power, i.e., distance between classes as a function of feature (right). The numbers
above the x-axis indicate the rank of the best 9 features.

The results are summarized in Table 2. A comparison across all feature sets shows that, over-
all, the AFTE features are the most powerful for classification with our audio classes. For some
individual classes, however, other feature sets perform slightly better: for classical music, the
MFCC set performs the best with 90% classification; and for speech, the SLL set performs the
best with 88% classification. Although it is not shown here, the performance of the AFTE fea-
ture set increases as more features are included. With the best 20 features, average classification
performance increases to 95% with a 95% classification accuracy for classical music as well.



Feature || Popular | Classical Crowd

Set Music Music | Speech| Noise| Noise | Average
SLL 80% 96% 88% | 46% | 99% 82%
MFCC 90% 90% 84% | 75% | 86% 85%
PA 72% 78% 83% | 88% | 100% 84%
AFTE 91% 83% 85% | 91% | 100% 90%

Table 2: Classification Results Summary. Each entry gives the percent correct classification for
the given audio class (top row) and feature set (left column). The right column shows, for each
feature set, the average percent correct across all classes.

In comparing Bhattacharyya distances across feature sets it is important to note that they are
not normalized across feature set. The MFCC set gives the single largest Bhattacharyya distance,
5.5 between the speech and crowd noise classes. Despite this large distance, the MFCC feature set
is not the best basis for classifying speech or crowd noise: speech is often confused with popular
and classical music and crowd noise is often confused with noise (see left panel of Fig. 2). The
PA and AFTE feature sets, on the other hand, gives the lowest maximum Bhattacharyya distances
at 1.2 and 2.2 respectively, but they are not the worst feature set overall. This combination of
low Bhattacharyya distances and high classification performance may be due to a high correlation
between features and/or a better distribution of distances across features and audio classes.

4 Discussion

One can see from the ranking of the top nine features (see right panels of Figs. 1-4) that temporal
variations of the basic features are important for classification. In all cases, there are at least a
few features in the top nine that incorporate temporal modulations. In addition, although we don't
show the results here, performance of the SLL feature set is reduced to 71% overall if only the
average values (DC) of the features are used for classification.

The choice of a 32768-sample (743 msec) frame length was based on a finding of Spina and
Zue [3]. Using a Gaussian-based classification mechanism to classify audio into several categories,
they operated on MFCC and found that performance increased as the analysis frame size increased
to about 500 msec and then saturated (and decreased a little) with further increases. Thus, we
chose the next power of 2 (for FFT performance reasons) larger than 500 msec. Whether this is
the optimum frame size for all feature sets is not known but should be examined in future studies.
Nonetheless, from a perceptual point of view, this is a remarkably short section of audio on which
classification is performed. Improvements in classification performance could surely be made if
classification were based on more than one audio frame.

Our assumption of Gaussian-shaped clusters in the feature space may not be valid. Based on
reasonably favorable results, it appears that it is not a bad assumption but we have not analyzed
the feature space to the point where we can quantitatively evaluate this assumption. Classifica-
tion performance could be further improved by such an analysis followed by the incorporation of
perhaps more appropriate probability density functions.

Further improvements in classification performance could also come from changes to the clas-
sifier. For example, itis possible that sequential classification using fewer classes at each stage (i.e.
grouping several classes initially) could result in improved performance. One could use different
features, perhaps based on the Bhattacharyya distances between classes, for each sequential stage.



In addition, as more powerful features for class discrimination are developed, different classifi-
cation schemes (self-organizing maps, neural networks, k-nearest neighbour schemes and hidden
Markov models) may begin to show differences in performance.

Finally, combinations of the best features from each set could also lead to improvements in
classification performance. One could rank the features across sets in the same manner that we
rank features within each feature set, and then choose the combination that yields the best perfor-
mance.

5 Conclusions

We have shown that audio classification can be improved by developing and working with im-
proved audio features. Our comparison of current feature sets for this purpose shows that, overall,
the AFTE feature set is the most powerful. However, for classifying particular audio classes,
namely classical music and speech, the SSL feature set performs best.

From our ranking of features we have also shown that temporal variations in features are
important for audio class discrimination. In all of our feature sets, the nine top-ranked features
include at least two features representing temporal fluctuations.

Finally, we have seen that the Bhattacharyya distance can be a useful measure for determining
the power of a particular feature. However a high Bhattacharyya distance between two clusters
does not necessarily guarantee good classification performance for those cluster classes. In order
to better relate Bhattacharyya distance and classification performance, one must look at correla-
tions between features and at the entire feature vs. distance space (right panels of Figs. 1-4).

Future work will involve the development of new features, further analysis of the feature space
to test the Gaussian assumption, examination of alternative classification schemes, and the incor-
poration of more audio classes.
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