Abstract

Four audio feature sets are evaluated in their ability to classify five general audio classes and seven popular music genres. The feature sets include low-level signal properties, mel-frequency spectral coefficients, and two new sets based on perceptual models of hearing. The temporal behavior of the features is analyzed and parameterized and these parameters are included as additional features. Using a standard Gaussian framework for classification, results show that the temporal behavior of features is important for both music and audio classification. In addition, classification is better, on average, if based on features from models of auditory perception rather than on standard features.

1 Introduction

Developments in Internet and broadcast technology enable users to enjoy large amounts of multimedia content. With this rapidly increasing amount of data, users require automatic methods to filter, process and store incoming data. Some of these functions will be aided by attached metadata, which provide information about the content. However, due to the fact that metadata are not always provided, and because local processing power has increased tremendously, interest in local automatic multimedia analysis has increased. A major challenge in this field is the automatic classification of audio and music (Wold et al., 1996; Spina & Zue, 1997; Scheirer & Slaney, 1997; Scheirer & Slaney, 1999; Li et al., 2001). Tzanetakis & Cook (2002) combine standard features with representations of rhythm and pitch content and show classification performance in the range of 60%.

There has also been some recent work on automatic music genre detection. Tzanetakis & Cook (2002) combine standard features with representations of rhythm and pitch content and show classification performance in the range of 60%.

Several different classification strategies have been employed in these studies, including multivariate Gaussian models, Gaussian mixture models, self-organizing maps, neural networks, k-nearest neighbor schemes and hidden Markov models. In some cases, the classification scheme does not influence the classification accuracy (Scheirer & Slaney, 1997; Golub, 2000), suggesting that the topology of the feature space is relatively simple. An important implication of these findings is that, perhaps further advances could be made by developing more powerful features or at least understanding the feature space, rather than building new classification schemes.

Thus, our focus here is on features for classifying audio and music. We compare the two feature sets most commonly used, low-level signal properties and the MFCC, with two new feature sets and evaluate their performance in the classification of a set of general audio classes and a set of popular music genres. We also examine how the characterization of features’ temporal behavior can influence classification. The two new feature sets, described in detail below, are based on perceptual models of auditory processing.

2 Method

We compare four distinct feature extraction stages to evaluate their relative performance while using the same classifier stage, a Gaussian-based quadratic discriminant analysis (QDA) (Duda & Hart, 1973). The feature sets (described below) are: (1) low-level signal properties; (2) MFCC; (3) psychoacoustic features including roughness, loudness and sharpness; and (4) an auditory model representation of temporal envelope fluctuations. The two new feature sets introduced in Secs. 2.1.3 and 2.1.4 are based on models of human auditory processing. Each begins with a bank of bandpass filters which represent the frequency resolution of the peripheral human auditory system. These filters, termed critical band filters, reflect the channeling property of the auditory system, i.e., signals that are passed through dif-
Table 1: Audio database by class: number of audio files in each class.

<table>
<thead>
<tr>
<th>General Audio Class</th>
<th>Classical Music</th>
<th>Popular Music</th>
<th>Speech</th>
<th>Noise</th>
<th>Crowd Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Files</td>
<td>35</td>
<td>188</td>
<td>31</td>
<td>25</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Popular Music Class</th>
<th>Jazz</th>
<th>Folk</th>
<th>Electronica</th>
<th>R&B</th>
<th>Rock</th>
<th>Reggae</th>
<th>Vocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Files</td>
<td>38</td>
<td>25</td>
<td>27</td>
<td>43</td>
<td>37</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

2.1 Features

The feature extraction process, illustrated in Fig. 1, includes a summarized temporal analysis of features. Individual features are calculated from 23-msec half-overlapping subframes of audio. A power spectrum is then calculated for each feature, across 64 consecutive subframe values, resulting in an overall analysis frame of 743 msec. The power spectrum is normalized by the DC value and summarized by calculating the energy in four bands: 1) 0 Hz (average across observations), 2) 1-2 Hz (on the order of musical beat rates), 3) 3-15 Hz (on the order of speech syllabic rates), and 4) 20-43 Hz (in the lower range of modulations contributing to perceptual roughness). The top nine values (determined by a separate ranking procedure for each feature set - see below) of this spectral summarization were then selected and used in the classification process. This entire process was performed separately for each feature set.

2.1.1 Low-level signal parameters

This feature set, based on standard low-level (SLL) signal parameters, includes: (1) root-mean-square (RMS) level, (2) spectral centroid, (3) bandwidth, (4) zero-crossing rate, (5) spectral roll-off frequency, (6) band energy ratio, (7) delta spectrum magnitude, (8) pitch\(^1\) and (9) pitch strength. This set of features is based on a recent paper by Li et al. (2001). [See the paper for mathematical details.]

The final SLL feature vector consists of 36 features:

- 1-9: DC values of the SLL feature set
- 10-18: 1-2 Hz modulation energy of the SLL feature set
- 19-27: 3-15 Hz modulation energy of the SLL feature set
- 28-36: 20-43 Hz modulation energy of the SLL feature set

2.1.2 MFCC

The second feature set is based on the first 13 MFCCs (Slaney, 1997). The final feature vector consists of 52 features:

- 1-13: DC values of the MFCC coefficients
- 14-26: 1-2 Hz modulation energy of the MFCC coefficients
- 27-39: 3-15 Hz modulation energy of the MFCC coefficients
- 40-52: 20-43 Hz modulation energy of the MFCC coefficients

2.1.3 Psychoacoustic features

The third feature set is based on estimates of the percepts roughness, loudness and sharpness. Roughness is the perception of temporal envelope modulations in the range of about 20-150 Hz, maximal at 70 Hz, and is generally thought to be a primary component of musical dissonance (Plomp & Levelt, 1965; Terhardt, 1974). Loudness is the sensation of signal strength and sharpness is a perception related to the spectral density and the relative strength of high-frequency energy. Estimates of these percepts were calculated based on current models (Zwicker & Fastl, 1990; Daniel & Weber, 1997; Bismarck, 1974). Temporal analyses of loudness and sharpness were calculated using the subframe process described above. However, because roughness is based on mid-rate temporal envelope modulations, an accurate estimate can only be obtained for relatively long audio frames (\(>\sim 180\) msec). Thus, the temporal variation of roughness within an audio frame is represented by its mean and standard deviation over 186-msec subframes with 93-msec overlap.

\(^1\)The term pitch is used here to describe an estimate of the pitch percept derived using an autocorrelation-based method (see Li et al., 2001 for details).
The final psychoacoustic (PA) feature vector consists of 10 features:

1. average roughness
2. standard deviation of roughness
3. average loudness
4. average sharpness
5. 1-2 Hz loudness modulation energy
6. 1-2 Hz sharpness modulation energy
7. 3-15 Hz loudness modulation energy
8. 3-15 Hz sharpness modulation energy
9. 20-43 Hz loudness modulation energy
10. 20-43 Hz sharpness modulation energy

2.1.4 Auditory filterbank temporal envelopes

The fourth feature set is based on a model representation of temporal envelope processing by the human auditory system. Each audio frame is processed in two stages: (1) it is passed through a bank of 18 4th-order bandpass GammaTone filters (Glasberg & Moore, 1990; Hartmann, 1997, chap. 10) spaced logarithmically from 26 to 9795 Hz; and (2) the modulation spectrum of the temporal envelope is calculated for each filter output. The spectrum of each filter is then summarized by summing the energy in four bands: 0 Hz (DC), 3-15 Hz, 20-150 Hz, and 150-1000 Hz. The parameterized summary of high modulation rates is not calculated for some low-frequency filters: a modulation rate summary value is only computed for a critical band filter if the filter’s center frequency is greater than the maximum rate of the band. This process yields 62 features describing the auditory filterbank temporal envelopes (AFTE):

1-18: DC envelope values of filters 1-18
19-36: 3-15 Hz envelope modulation energy of filters 1-18
37-52: 20-150 Hz envelope modulation energy of filters 3-18
53-62: 150-1000 Hz envelope modulation energy of filters 9-18

2.2 Classification

Classification of audio files was performed using quadratic discriminate analysis (see Duda & Hart, 1973), which provided better preliminary results than linear discriminate analysis. Features were calculated from each file on 10 consecutive 743-msec frames with a 558-msec hop-size. The feature vectors were grouped into classes based on the type of audio and were used to parameterize an \(N \)-dimensional Gaussian mixture model (one Gaussian with its own mean and variance for each class), where \(N \) is the length of the feature vector. Training and cross-validation were done using the \(.632+ \) bootstrap method, an improved version of the leave-one-out bootstrap (Efron & Tibshirani, 1997, 1993). This method has been shown to provide estimates of prediction error with less variance than standard k-fold cross-validation techniques, especially for small databases. Bootstrap replications were performed 500 times for each class. Classification was done per audio file and was assigned based on the majority of 10 consecutive audio frame classifications.
Although the size of the feature sets differ, we performed classification using the same number of features from each set. We chose the best nine features from each set following an iterative ranking procedure: for each feature, we estimated classification error from the Bhattacharyya distances (see, e.g., Papoulis 1991) between classes and designated the top ranked feature as that which gave the lowest error; we repeated this for 2, 3, ... 9 features.

3 Results

3.1 SLL feature set

The ranking results for the SLL feature set are shown in Table 2. Different rankings are shown for each combination of audio-class set (general audio or music genre) and feature type (static or static-and-temporal). For general audio classification, features 5 (spectral roll-off frequency), 6 (band-energy ratio), and 1 (RMS level) rank the highest. When temporal features are included, features 24 (3-15 Hz modulations of band-energy ratio), 28 (20-43 Hz modulations of RMS level), and 26 (3-15 Hz modulations of pitch) are included in the top nine. For music genre classification, the top ranked features are slightly different: feature 3 (spectral bandwidth) is the top static feature and feature 19 (3-15 Hz modulations of RMS level) is included in the top nine. It is clear from these results that, when available, temporal modulations (over a range of rates) of features are important for classification.

Classification results for the SLL feature set are shown in Fig. 2. Each panel shows a confusion matrix that indicates the probability (± standard error) of each audio or music class (left axis) being classified as each class in the group (bottom axis). The top panels show results for general audio classification, the bottom panels for music genre classification; the left panels show results for classification based on static features; the right panels for classification based on both static and temporal features.

In general classification is better when temporal features are included. Although only one audio class (popular music) shows a significant improvement, there is only one class (folk music) for which performance decreased slightly. With temporal and static features, overall classification performance is 86 ± 4% for the general audio classes and 61 ± 11% for the music genres. For the general audio classes, classification is best for classical music (98 ± 2%) and worst for background noise (60 ± 12%), which is confused with crowd noise and classical music. For the music genres, classification is best for folk (80 ± 9%) and worst for R&B (49 ± 8%) which is confused with electronica and reggae.

I have limited all feature sets to their top nine features because the standard low-level feature set consists of only nine basic features.

Table 2: Feature ranking for the standard low level feature set. Feature numbers correspond to the features described in Sec. 2.1.1.
3.2 MFCC feature set

Table 3 shows the top ranked MFCC features for each audio-class set and feature-type combination. For general audio classification, the first three MFCCs are highly ranked. When temporal features are included, features 27 (3-15 Hz modulations of MFCC 1) and 49 (20-43 Hz modulations of MFCC 10) are included in the top nine. For classification of music genres, the rankings are slightly different, but the first few MFCCs also seem to be the most important. When temporal features are included, feature 40 (20-43 Hz modulations of MFCC 1) is ranked the highest. These results show that temporal modulations of MFCCs are also important for classification.

Table 4 shows the top ranked psychoacoustic features for each audio-class set and feature-type combination. Of the three static psychoacoustic features, feature 4 (average sharpness) is ranked highest, followed by features 1 (average roughness) and 3 (average loudness) for both general audio and music genre classification. When temporal features are included, the top ranked features include 8 (3-15 Hz modulations of sharpness) and 9 (20-43 Hz modulations of loudness) for the general audio classification, largely helped by an increased ability to classify background noise and popular music. Classification of classical music is, however, worse for the MFCC feature set (89 ± 5% with MFCC vs. 98 ± 2% with SLL). Overall classification performance of music genres is not significantly better with MFCC features than SLL features (65 ± 10% with MFCC vs. 61 ± 11% with SLL), although classification performance of rock music is significantly increased with MFCC features and no music genres show a decrease in classification performance.

3.3 PA feature set

Table 4: Feature ranking for the psychoacoustic feature set. Feature numbers correspond to the features described in Sec. 2.1.3. Rankings 4-9 for static features are not applicable because there are only 3 static psychoacoustic features.

Table 5 shows the classification results for the MFCC feature set. As with the SLL feature set, classification is better when based on the top nine static-and-temporal features, rather than the top nine static features. Overall classification based on both feature types (right panels) is 92 ± 3% for the general audio classes and 65 ± 10% for the music genres. Overall performance is slightly better than the SLL feature set for general audio classification, largely helped by an increased ability to classify background noise and popular music. Classification of classical music is, however, worse for the MFCC feature set (89 ± 5% with MFCC vs. 98 ± 2% with SLL). Overall classification performance of music genres is not significantly better with MFCC features than SLL features (65 ± 10% with MFCC vs. 61 ± 11% with SLL), although classification performance of rock music is significantly increased with MFCC features and no music genres show a decrease in classification performance.

3.4 **AFTE feature set**

Table 5 shows the top ranked features from the set describing the auditory filterbank temporal envelope. The static features are the DC outputs (no modulations) of the 18 bandpass filters, which cover a range of center frequencies (260-9795 Hz). The top nine static features for both general audio and music genre classification span the range of center frequencies. When temporal features are included, several appear in the top nine rankings: 62 (150-1000 Hz modulations of filter 18), 25 (3-15 Hz modulations of filter 7), 41 (20-150 Hz modulations of filter 5), 52 (20-150 Hz modulations of filter 18), and 20 (3-15 Hz modulations of filter 2). As with all the other feature sets, temporal variations of features are important for classification.

Classification results for the AFTE feature vector are shown in Fig. 5. As with the previous feature sets, the inclusion of temporal features increases overall classification performance. (In this case, the number of features used for classification also increased.) The overall classification performance using both static and temporal features is 92 ± 3% for general audio classes and 62 ± 10% for music genres. These values are roughly the same as those for the MFCC feature set.
temporal features increases the mean overall classification performance. The differences are not significant in overall classification rates but they are for many individual classes.

4 Discussion

It is well known that, for audio signals, temporal envelope fluctuations at specific rates play an important role in perception. We have shown here that the explicit inclusion of parameters describing these modulations (not only in estimates of the temporal envelope but in other features as well) can increase the performance of audio and music classifiers. We have also shown that a feature set based on a model of auditory perception outperforms other current standard feature sets in the classification of general audio and music genre.

While the overall classification performance of our general audio classes is quite high (93 ± 2%), music genre classification is far from perfect (74 ± 9%). While this measure of performance may seem low, it should be pointed out that the classes of music genre do not always have distinct boundaries, which makes their classification a fuzzy problem. We have attempted, in our selection of audio files, to create an internally consistent database so that each music genre contains examples with similar audio qualities. In this manner we can evaluate which features or properties of features are important for characterizing audio qualities relevant to musical genre. Nevertheless there are a number of other (non-acoustic) properties that contribute to labeling a piece of music as a specific genre, including artist, album, and record label. These aspects of genre labeling will not likely be accounted for in features extracted from the audio. So, while we are using the classification of musical genre as a means to measure how relevant our features are, they may never be able to do the job perfectly. In comparison to results of other studies of music genre classification [Tzanetakis et al., 2001; Tzanetakis & Cook, 2002], our features looks quite promising.

Several limitations of the current study should be mentioned. Our audio database is far from complete. We have shown clear advantages of particular feature sets operating on our database but these methods should be performed on larger data sets for confirmation. In addition, a larger database would likely reduce variance in our estimates of classification performance, and allow more conclusive comparisons between the different feature sets.

Our assumption of Gaussian-shaped clusters in the feature space may not be valid. Based on reasonably favorable results, it appears that it is not a bad assumption but we have not analyzed the feature space to the point where we can quantitatively evaluate this assumption. Classification performance could be further improved by such an analysis followed by the incorporation of perhaps more appropriate probability density functions.

Further improvements in classification performance could also come from changes to the classifier. For example, it is possible that sequential classification using fewer classes at each stage (i.e. grouping several classes initially) could result in improved performance. One could use different features, perhaps based on the Bhattacharyya distances between classes, for each sequential stage. In addition, as more powerful features for class discrimination are developed, different classification schemes (self-organizing maps, neural networks, k-nearest neighbor schemes and hidden Markov models) may begin to show differences in performance.

Finally, combinations of the best features from each set could also lead to improvements in classification performance. One could rank the features across sets in the same manner that we rank features within each feature set, and then choose the combination that yields the best performance.

5 Conclusions

We have shown that audio classification can be improved by developing and working with improved audio features. Our comparison of current feature sets for this purpose shows that temporal modulations of features are important for the classification of audio and music.

Overall, we saw that the AFTE feature set is the most powerful. However, for a few particular audio classes, classification was better with other feature sets (crowd noise: SLL and MFCC; classical music: SLL; speech: PA).

Future work will involve the development of new features, further analysis of the feature space to test the Gaussian assumption, examination of alternative classification schemes, and the incorporation of more audio classes.

Acknowledgments

The authors would like to thank Armin Kohlrausch of Philips Research for helpful comments on this manuscript and Nick de Jong and Fabio Vignoli of Philips Research for their assistance in building the audio database.

References

